Southern Illinois Multi-Modal Station:
Benefit-Cost Analysis

July 2018

Location: Carbondale, Illinois

Project Type: Urban – Multi-Modal Transportation Center

Applicant: City of Carbondale

Type of Applicant: City Government

BUILD Funding Requested: $14.64 M

DUNS Number: 096712948

Website: multimodal.explorecarbondale.com

Contact: Gary Williams, City Manager City of Carbondale, Illinois
 phone: (618) 457-3226, email: gwilliams@explorecarbondale.com
A1.0 Summary

Table 1: Summary of Benefit-Cost Analysis – Southern Illinois Multi-Modal Station

<table>
<thead>
<tr>
<th>Analysis Item</th>
<th>Outcome</th>
</tr>
</thead>
</table>
| **Current Status/Baseline & Problem to be addressed** | • Existing, aging Amtrak Station
• Station and facilities need ADA upgrades
• Current ridership exceeds capacity of station
• Does not provide central location for multiple modes of transportation
• No connectivity between transportation modes
• Inefficient and unsafe transfers between transportation modes
• Does not include office space for other transportation services or organizations
• Does not enhance and encourage revitalization and economic growth of Downtown |
| **Change to Baseline/Alternatives** | • Construction of a new Southern Illinois Multi-Modal Station (SIMMS) to provide access for modes of transportation including: Amtrak, Greyhound, Commuter Busses, Transit Buses, Pedestrians, and Bicyclists
• No-Build |
| **Type of Impacts** | • Revitalize Downtown Carbondale
• Meet future Amtrak ridership demands
• Create a true Multi-Modal facility
• Create new jobs
• Improve transportation connectivity
• Expand transportation alternatives in Downtown Carbondale
• Meet ADA design standards to provide transportation access to all users |
| **Population Affected by Impacts** | • Amtrak passengers (local, regional & national)
• SIUC students, faculty, and staff
• Tourists to Carbondale & Southern Illinois region
• Business travelers
• Disabled and economically disadvantaged populations
• Residents of Carbondale, Jackson County, and Southern Illinois
• Downtown businesses |
| **Economic Benefit** | Monetized value of:
• Vehicle operations & maintenance
• Reduced fuel consumption
• Reduced emissions
• Reduced travel time (due to congestion)
• Reduced accident costs
• Increases tourism |
| **Summary of Results** | Estimated dollar value of:
• Time savings
• Reduced pollution
• Reduced fuel consumption
• Reduced vehicle operations & maintenance
• Reduced accident costs |
| **B/C Ratio** | The results of the BCA are:
• No Discount: 3.77:1
• 3% Discount: 2.32:1
• 7% Discount: 1.33:1 |
A2.0 Introduction

This document provides a description of the input data and the methodological standards utilized for the benefit-cost analysis (BCA) of the SIMMS project as submitted by the City of Carbondale, Illinois for the BUILD Grant funding.

BCA is a conceptual framework that quantifies, in monetary terms, as many of the costs and benefits of a project as possible. Benefits are broadly defined. They represent the extent to which people impacted by the project are made better-off, as measured by their own willingness-to-pay. In other words, central to a BCA is the idea that people are best able to judge what is “good” for them, what improves their well-being or welfare.

BCA also adopts the view that a net increase in welfare (as measured by the summation of individual welfare changes) is a good thing, even if some groups within society are made worse-off. A project or proposal would be rated positively if the benefits to some are large enough to compensate the losses of others.

Finally, BCA is typically a forward-looking exercise, seeking to anticipate the welfare impacts of a project or proposal over its entire life-cycle. Future welfare changes are weighted against today’s changes through discounting, which is meant to reflect society’s general preference for the present, as well as broader inter-generational concerns.

A2.1 Analysis Framework

The BUILD project is expected to produce both quantifiable and less tangible qualitative benefits. The benefit-cost analysis conducted for the SIMMS project includes the quantifiable benefits and considers impacts and externalities of sufficient quality.

The specific methodology developed for this application was developed using the above BCA principles and the American Association of State Highway and Transportation Officials (AASHTO) guide User Benefit Analysis for Highways (August 2003) and with the ARRA guidance in the Federal Register. In particular, the methodology involves:

- Establishing existing and future conditions under the “build” and “no-build” scenarios.
- Assessing benefits with respect to each of the long-term outcomes identified in the Notice of Funding Opportunity (NOFO).
- Measuring benefits in dollar terms, whenever possible, and expressing benefits and costs in a common unit of measurement.
- Using DOT guidance for the valuation of travel time savings, benefits, and reductions in air emissions, while relaying on industry best practice for the valuation of other effects.
- Discounting future benefits and costs with the real discount rates recommended by the DOT (7% and 3% for sensitivity analysis).
- Conducting a sensitivity analysis to assess the impacts of changes in key estimating assumptions.
A typical benefit-cost analysis uses a standard 20-year lifecycle to facilitate comparisons across projects. Per the guidelines, coupled with the expected life span of the SIMMS building and appurtenances, a 40-year lifecycle was used for this analysis. A typical benefit-cost analysis for a transportation project measures four primary categories of user benefits:

- Travel time savings
- Vehicle operating cost reductions
- Safety improvements
- Emission reductions, including greenhouse gases

For the BUILD Grant application, the benefit-cost analysis has been expanded to include vehicle crash reductions.

Project capital costs are estimated annually from the start of construction to 4 years after the project construction is completed and the facility opened to users. Project capital costs include:

- Property acquisition
- Engineering and design
- Construction

In addition to project capital costs, the project will have annual costs after construction is completed and the station is opened to users. These annual costs include operation and maintenance (O&M) costs. The O&M costs include items such as:

- Station cleaning and maintenance
- Utilities (electricity, telephone, gas, water, internet, etc.)
- Landscaping maintenance
- Parking lot, sidewalk, and outside maintenance (such as landscaping, snow removal, etc.)

The future O&M costs (per square foot of station area) for the new station and parking garage were developed based upon similar O&M costs provided by the City of Carbondale for maintenance of the historic passenger railroad depot.

The O&M costs for the new station shown in the BCA also account for the net difference between the O&M costs for the existing station and the O&M costs for the new station. Since the existing station is already incurring O&M costs, the BCA only uses the additional O&M costs for the new station based on the planned size and its energy-efficient and environmentally friendly design.

The definition of project cost is more inclusive than construction costs or the funding requested from the BUILD Grants. This methodology is conservative, but it reflects the true agency costs over the lifecycle of the proposed project.
Several sources of input data were consulted, examples include:

- *Downtown Revitalization Background Review*, City of Carbondale, August 2012
- *Downtown Master Plan*, City of Carbondale, 2014
- *City of Carbondale Comprehensive Plan*, City of Carbondale, June 2010
- *Amtrak Station Program and Planning Guidelines*, Amtrak, May 2013
- *U.S. Energy Information Administration*
- *Multi-Modal Transportation System Assessment*, Southern Illinois Metropolitan Planning Organization, June 2014
- *Benefit-Cost Analysis Guidance for BUILD Applicants*

A3.0 Economic Assumptions

This section summarizes the economic assumptions utilized for the BCA for the SIMMS project to comply with the guidelines of the BUILD Discretionary Grant. In the cases where the BUILD Discretionary Grant guidelines did not specify value, documented standard values were utilized.

A3.1 Discount Rate

The guidance in the Federal Register for the discount is 7%. For the sensitivity analysis, the discount rate is 3%.

A3.2 Study Period

The City of Carbondale has completed the preliminary environmental site assessment for the project site, as well as the preliminary engineering layout and supporting schematic architectural design for the station. Preparation of the final engineering plans, specifications, and construction documents will begin in early 2019. Final construction plans and documents will be completed within 6 months. The project will be advertised for bid for contractors during the fourth quarter of 2019 and the contract for the construction of the station should be awarded shortly thereafter. The construction of SIMMS is expected to be completed and the station opened during the first quarter of 2022.

The BCA study period is 40 years, beginning at the end of the first quarter of 2022 and ends in the fourth quarter of 2061.
A4.0 Project Overview

The project under analysis consists of the design and construction of a new Multi-Modal transportation center, SIMMS, in Downtown Carbondale. SIMMS will include a new two-story station and parking garage. The project also includes the demolition of the existing station.

The purposes of the proposed project are to:

- Create a Multi-Modal station to connect Amtrak, Greyhound, Jackson County Mass Transit, South Central Illinois Transit, Shawnee Mass Transit, RIDES Mass Transit, Saluki Express, taxis, passenger vehicles, bicycles, and pedestrians in one, central location in Downtown Carbondale to encourage Multi-Modal trips (Economic Competitiveness and Quality of Life)
- Reduce fuel consumption and emissions (Environmental Sustainability)
- Design and construction of a modern station, per the Amtrak Station Programming Guidelines, to meet future transportation needs and ridership (State of Good Repair)
- Provide safe accommodations for motorized and non-motorized transportation users to connect to other modes to transportation, including ADA accessible facilities (Safety)
- Design and construction of a station that meets the safety and security needs of patrons (Safety)
- Create jobs in an economically disadvantaged region; connect people with employment, education, healthcare, and other essential services via safe, reliable and affordable transportation; and revitalize Downtown Carbondale (Ladders of Opportunity)
- Spur and enhance the revitalization of Downtown Carbondale (Economic Competitiveness)
- Connect people with employment (Economic Competitiveness)

A5.0 Base Scenario and Alternatives

The base or, “no build”, scenario includes utilizing the existing Amtrak station throughout the 40-year design year (See USDOT Benefit-Cost Analysis Guidance for BUILD and INFRA Applications). The alternative or “build” scenario includes the construction of the Multi-Modal transportation center, SIMMS.

A6.0 Amtrak Passenger Ridership

The existing Amtrak ridership volume at the Carbondale Amtrak station was obtained from the National Association of Railroad Passengers. Ridership data between 2009 and 2016 was collected to determine the annual average growth rate of riders at the station. It was determined that the “background” Amtrak ridership at Carbondale will increase at 0.80% per year. The background Amtrak riders will use the station whether or not the new Multi-Modal center is constructed. Background ridership is influenced by many factors which can have either a positive or negative impact on ridership. For example, rising gasoline prices would tend to increase ridership while low fuel prices would result in lower ridership. On time performance of Amtrak trains has had a negative effect on ridership in recent years with estimates of as high as 25% reduction in
ridership due to poor on time performance. The Amtrak service in Carbondale is hosted on a Canadian National railway and thus must compete with freight traffic and comply with CN operating restrictions. Amtrak has proposed in its FY-2019 Legislative and Grant Request to Congress that legislation be passed to remedy these issues. Increased on time performance could substantially increase ridership over current levels, however, projected volumes were not adjusted for this potential increase.

The future, 20-year design Amtrak ridership projection at the Multi-Modal transportation center, SIMMS, was provided by Amtrak (Chicago) to the City of Carbondale. The 20-year ridership at Southern Illinois Multi-Modal Station is expected to be 211,879 riders per year. Ridership analysis capped at 20-years to maintain the data’s reliability. The BCA analysis calculated the “new Amtrak riders” at SIMMS due to the new Multi-Modal center. The BCA calculations utilize the “new Amtrak riders” to calculate the benefits because they are a direct result of the project.

A7.0 Local Mass Transit Ridership

The SIMMS is expected to result in a significant increase in ridership due to improved interconnectivity, visibility and convenience. The estimated ridership growth rate is 10% in year 1, 10% in year 2, 5% in year 3 and 1% thereafter. Using the average transit rider trip distance of 5.8 miles, this increased ridership will result in a reduction of about 950,000 miles of passenger car traffic in the first four years of the SIMMS. These benefits will continue to accrue over the 40 year period of the Benefit Cost Analysis. This reduction in passenger car miles is converted to dollars in the BCA using the current Federal mileage reimbursement rate.

A8.0 Costs

The costs for SIMMS include engineering design, property acquisition, and construction. Per the BUILD BCA guidelines, previous engineering design costs already expended by the City for the project should not be included as a “cost” for the BCA. Table 2 includes a summary of the project costs.

<table>
<thead>
<tr>
<th>Project Task</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land Acquisition</td>
<td>$569,719</td>
</tr>
<tr>
<td>Design & Engineering</td>
<td>$1,023,808</td>
</tr>
<tr>
<td>Construction</td>
<td>$16,681,500</td>
</tr>
<tr>
<td>Construction Testing & Inspection</td>
<td>$24,973</td>
</tr>
<tr>
<td>Total Future Project Costs</td>
<td>$18,300,000</td>
</tr>
</tbody>
</table>
A9.0 Benefits

A9.1 Travel Time/Travel Delay Savings

The BCA includes two “travel time savings” calculations for benefits due to the construction of the new Multi-Modal transportation center. By diverting passenger vehicle trips to passenger train trips, the project will create a benefit of travel time savings due to reduced congestion. The Midwest Regional Rail Initiative developed a cost per trip for travel time savings due to a reduction in traffic congestion. SIMMS will also result in a travel time savings due to a reduction in traffic congestion.

The project also results in a travel time savings due to the ability of Amtrak passengers to be productive while traveling by train as compared to driving in a single-occupant passenger vehicle. The travel time savings was calculated for business trips from Carbondale to other metropolitan stations – Chicago, Champaign, Memphis, and New Orleans. The BCA utilized a percentage of new Amtrak trips to each of the stations for business trips for the benefit calculations.

A9.1 Reduced Crashes

The new Multi-Modal transportation center will reduce the number of passenger vehicles along the roadways. The reduction of vehicle trips is due to trips previously taken by passenger vehicles being taken on the local transit system or by Amtrak passenger train. The number of reduced passenger vehicle trips was calculated for each year of the BCA study period. For passenger train traffic he origin and destination pairs (i.e. Carbondale-Chicago, Carbondale-Champaign, Carbondale- Memphis, etc.) were established in order to calculate the total vehicle miles that automobile travel was reduced by. For transit data, the increase in transit riders was multiplied by the average length of a transit passenger trip for the local system.

Annual crash data, from the Illinois Department of Transportation (IDOT), was obtained in order to determine the average annual vehicular crash rate per 1,000,000 vehicle miles traveled. The crash data includes all crashes on Illinois interstates, highways, county roadways, and local municipal streets that occurred during a calendar year. The IDOT annual crash data reports also include a total cost for the accidents that occurred during the year. The BCA utilized nine (9) years of IDOT crash data to determine the average annual crash rate per 1,000,000 vehicle miles traveled and the average annual cost of the accidents. This information was utilized to calculate the reduction of crashes and their associated costs for each year of the BCA study period for the reduction of passenger vehicle miles replaced by increased transit and Amtrak ridership.

A9.2 Fuel Saved

In order to calculate the fuel savings from the construction of SIMMS, the annual passenger vehicle miles saved, due to increased trips being taken on the local transit system or Amtrak, was utilized. Using information from the U.S. Environmental Protection Agency (USEPA), the average passenger car fuel economy rate was obtained and utilized to determine the amount of fuel saved by the project.
A9.3 Reduced Emissions

Information from the Midwest Regional Rail Initiative Benefit Cost & Economic Analysis and the US EPA was utilized to obtain the amount of emissions generated by passenger vehicles per miles traveled and the cost associated (See tab #2 of the BOC spreadsheet). The average annual passenger vehicle miles traveled that were replaced by transit or Amtrak trips was utilized to determine the amount of emissions saved by the project as well as the monetary value of the reduced emissions.

A9.4 Additional Project Benefits

SIMMS will generate numerous benefits that are not quantifiable or unable to have a monetary value associated with them. These benefits are important benefits that are due to the implementation of the project but are not able to be included in the BCA. Table 3 includes a summary of those benefits due to the construction of SIMMS.

Table 3: Additional Project Benefits Generated by Southern Illinois Multi-Modal Station

<table>
<thead>
<tr>
<th>Reduction of Vehicle Emissions and Fuel Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Due to reduction of automobile trips between Southern Illinois Multi-Modal Station and SIUC campus</td>
</tr>
<tr>
<td>• Due to increased non-motorized trips in Carbondale and surrounding areas</td>
</tr>
<tr>
<td>• Due to reduction of passenger vehicle trips in Carbondale, Jackson County, and Southern Illinois due to the increased connectivity and convenience of mass transit services at Southern Illinois Multi-Modal Station</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Continuous Amtrak Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Design plans and construction sequencing will be done so that the existing Amtrak station remains open during construction of Southern Illinois Multi-Modal Station and the parking garage.</td>
</tr>
<tr>
<td>• During construction, no additional costs for construction of a temporary station or busing riders to another station.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Travel Fee Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Due to reduction of parking fees in metropolitan areas (i.e. Chicago)</td>
</tr>
<tr>
<td>• Due to reduction of tollway fees in Chicago or other metropolitan areas</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alternative Travel Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Introduce new riders to Amtrak</td>
</tr>
<tr>
<td>• Introduce new riders to mass transit services</td>
</tr>
<tr>
<td>• Provide travel options for those that do not want to drive long distances or in congested areas</td>
</tr>
<tr>
<td>• Provide the opportunity for a Multi-Modal trip</td>
</tr>
</tbody>
</table>
• Economic travel options for students, the elderly, and economically disadvantaged populations
• Provide bike sharing and bike storage facilities at Southern Illinois Multi-Modal Station

Community Development & Enhancement

• Catalyst to promote and enhance revitalization of downtown Carbondale
• Create a modern, environmentally sustainable facility in Southern Illinois
• Enhance the landscape of Downtown for all visitors (pedestrians, bicyclists, transit riders, motorists, etc.)
• Create a Multi-Modal station that will be flexible to accommodate future travel demands
• Greet visitors and tourists arriving by train and bus to Southern Illinois
SIMMS Benefit Cost Analysis Exhibits

Exhibit 1 – Benefit-Cost Analysis Spreadsheet

Exhibit 2 – Illinois Crash Data

Exhibit 3 – Supporting Information for Benefit Cost Analysis
Southern Illinois Multi-Modal Station (SIMMS) Benefit Cost Analysis

| Year | Total Amtrak Riders | Back haul Riders (61%) per year | Total New Riders (62%) in Project | New Amtrak Riders (from Chicago) | New Amtrak Riders (from St. Louis) | New Amtrak Riders (from Champaign-Urbana) | New Amtrak Riders (from Peoria, Normal) | Increased Riders during Rides Reused | Total Riders (Min) | Total Riders (Max) | Transformed Riders | Transportation (Operation & Maintenance Savings/100 passengers) | Intercity Savings (per mile) | Travel Time Savings (in 2011 miles) | Travel Time Savings (in 2011 miles) | Charge Reduction (20,759 in cost) | Increased Riders during Project (51%) | Increased Riders during New Downtown (62%) | Total Cost (2011 Dollars) | Discounted Values | Design and Construction | Station-Maint. and operation $750K -5% per F.T. | Total Annual Expense -5% per F.T. | Construction & Design 10% per F.T. | Discounted Values |
|------|---------------------|---------------------------------|-----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------|----------------|----------------|---------------------------------|----------------|----------------|----------------|-----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| 2014 | 124,001 | 75,000 | 71,905 | | | | | | $7,390 | $7,390 | $7,390 | $7,390per F.T. | $7,390per F.T. | $7,390per F.T. | $7,390per F.T. | $7,390per F.T. | $7,390per F.T. | $7,390per F.T. | $7,390per F.T.
| 2021 | 156,484 | 164,975 | | | | | | | $7,390 | $7,390 | $7,390 | $7,390per F.T. | $7,390per F.T. | $7,390per F.T. | $7,390per F.T. | $7,390per F.T. | $7,390per F.T. | $7,390per F.T. | $7,390per F.T.

Exhibit 1: Page A11
Southern Illinois Multi-Modal Station

Illinois Crashes
(www.idot.illinois.gov/transportation-system/safety/Illinois-Roadway-Crash-Data)

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Crashes</th>
<th>Injury Crashes</th>
<th>Fatalities</th>
<th>Vehicle Miles Traveled</th>
<th>Crashes/ Million VMT</th>
<th>Total Estimated Cost (IL)</th>
<th>Average Cost/ Crash</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>296,049</td>
<td>61,084</td>
<td>845</td>
<td>105,031,931,935</td>
<td>2.8187</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>2013</td>
<td>285,477</td>
<td>61,001</td>
<td>895</td>
<td>105,475,516,461</td>
<td>2.7066</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>2012</td>
<td>274,111</td>
<td>60,252</td>
<td>886</td>
<td>104,456,093,136</td>
<td>2.6242</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>2011</td>
<td>281,788</td>
<td>84,172</td>
<td>835</td>
<td>103,369,436,684</td>
<td>2.7260</td>
<td>$ 5,500,000,000</td>
<td>$ 19,518.22</td>
</tr>
<tr>
<td>2010</td>
<td>289,280</td>
<td>88,937</td>
<td>858</td>
<td>105,742,171,123</td>
<td>2.7355</td>
<td>$ 5,300,000,000</td>
<td>$ 18,322.62</td>
</tr>
<tr>
<td>2009</td>
<td>292,106</td>
<td>89,090</td>
<td>832</td>
<td>105,734,665,833</td>
<td>2.7626</td>
<td>$ 5,300,000,000</td>
<td>$ 18,244.10</td>
</tr>
<tr>
<td>2008</td>
<td>408,258</td>
<td>94,021</td>
<td>950</td>
<td>105,636,173,601</td>
<td>3.8648</td>
<td>$ 6,200,000,000</td>
<td>$ 15,186.48</td>
</tr>
<tr>
<td>2007</td>
<td>422,778</td>
<td>103,156</td>
<td>1,126</td>
<td>107,403,168,918</td>
<td>3.9364</td>
<td>$11,500,000,000</td>
<td>$ 27,201.04</td>
</tr>
<tr>
<td>2006</td>
<td>408,670</td>
<td>106,918</td>
<td>1,136</td>
<td>106,812,329,371</td>
<td>3.8260</td>
<td>$10,700,000,000</td>
<td>$ 26,182.49</td>
</tr>
<tr>
<td>Average (9 years)</td>
<td>328,722</td>
<td>83,181</td>
<td>929</td>
<td>105,517,965,231</td>
<td>3.1112</td>
<td>$ 20,759.16</td>
<td></td>
</tr>
</tbody>
</table>

TRANSIT RIDERSHIP DATA

<table>
<thead>
<tr>
<th>SALUKI EXPRESS ANNUAL TRIPS PROVIDED</th>
<th>PROJECTED TRIPS FROM SALUKI EXPRESS TO RURAL AREAS</th>
<th>JCMTD TRIPS IN/OUT OF CARBONDALE FROM RURAL AREAS</th>
<th>RIDES TRIPS IN/OUT OF CARBONDALE FROM RURAL AREAS</th>
<th>SMTD TRIPS IN/OUT OF CARBONDALE FROM RURAL AREAS</th>
<th>SCT TRIPS IN/OUT OF CARBONDALE FROM RURAL AREAS</th>
<th>TOTAL TRIPS IN/OUT OF CARBONDALE FROM RURAL AREAS</th>
<th>CUMULATIVE INCREASED TRANSIT RIDERSHIP DUE TO SIMMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CURRENT</td>
<td>480,000</td>
<td>86,400</td>
<td>38,965</td>
<td>37,900</td>
<td>2,991</td>
<td>845</td>
<td>167,101</td>
</tr>
<tr>
<td>1ST YR</td>
<td>484,800</td>
<td>100,800</td>
<td>42,862</td>
<td>41,690</td>
<td>3,290</td>
<td>930</td>
<td>189,571</td>
</tr>
<tr>
<td>2ND YR</td>
<td>489,648</td>
<td>116,362</td>
<td>47,148</td>
<td>45,859</td>
<td>3,650</td>
<td>1,022</td>
<td>214,200</td>
</tr>
<tr>
<td>3RD YR</td>
<td>494,544</td>
<td>127,308</td>
<td>49,505</td>
<td>48,352</td>
<td>3,800</td>
<td>1,074</td>
<td>229,839</td>
</tr>
<tr>
<td>4TH YR</td>
<td>499,490</td>
<td>133,527</td>
<td>50,000</td>
<td>48,633</td>
<td>3,838</td>
<td>1,084</td>
<td>237,083</td>
</tr>
<tr>
<td>TOTALS</td>
<td>2,448,482</td>
<td>564,387</td>
<td>228,479</td>
<td>222,234</td>
<td>17,538</td>
<td>4,955</td>
<td>1,037,594</td>
</tr>
</tbody>
</table>

- Saluki Express current annual passenger trips is 480,000 with projected growth of 1% annually (Column 1)
- Currently 18% of Saluki Express riders use RMTD for trips outside of Carbondale. That percentage is expected to increase to 21%, 24% and 26% in the subsequent years (Column 2).
- The current annual trips provided by the local transit providers (RMTD, JCMTD, SMTD & SCT) is listed in columns 3-6
- The SIMMS is expected to result in a significant increase in overall ridership of the local transit system due to improved interconnectivity, visibility and convenience. The estimated growth rate is 10% in year 1, 10% in year 2, 5% in year 3 and 1% thereafter. This growth rate is applied to columns 3-6.
- The overall sum of trips to and from the rural areas is shown in Column 7
- The cumulative increase in passenger trips from and to the rural areas is shown in Column 8
- The cumulative increased ridership is converted to a reduction in annual passenger car miles using the average transit rider trip distance of 5.8 miles.
- This reduction in passenger car miles is converted to dollars in the Benefit Cost Analysis using the current Federal mileage reimbursement rate.
Southern Illinois Multi-Modal Station: Supporting Information for Benefit-Cost Analysis

From MWRRRI Benefit Cost & Economic Analysis (November 2006)
Savings of $23.43/passenger trip for trips diverted from car to rail (congestion) - page 5
For emissions savings see the Emissions Worksheet in the Excel BOC
Adjust by 2%/year for 10 years:
Concentration = $ 28.56

LEED Certified buildings
Can see 25% to 30% savings in energy use/year

From the City of Carbondale
$7.01/SF for current O&M costs for historic station
(Includes Admin, Management Fees, Contract Cleaning, Salaries, Benefits, Building Maint.,
HVAC maint., Electrical maint., plumbing maint., grounds maint., security, parking garage)

Tourism Revenue
From Jim Bowmen @ Renew Moline
IL Tourists spend $127/person/day (2008)
(for 2016, increase the 2008 value by 2.2%/year = $151)
Use 25% of new riders will be new tourists to Carbondale from Chicago and 20% from Champaign
Average Stay is 2.5 days

Illinois Crashes
(www.idot.illinois.gov/transportation-systems/safety/Illinois-Roadway-Crash-Data)
See IL Crashes Tab for details

<table>
<thead>
<tr>
<th>Value of Time:</th>
<th>% Business</th>
<th>% Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business: $28.50</td>
<td>40%</td>
<td>60%</td>
</tr>
<tr>
<td>Commuter $17.40</td>
<td>15%</td>
<td>85%</td>
</tr>
<tr>
<td>Pleasure: $17.40</td>
<td>5%</td>
<td>95%</td>
</tr>
<tr>
<td>Carbondale/Memphis</td>
<td>5%</td>
<td>95%</td>
</tr>
<tr>
<td>Carbondale/New Orleans</td>
<td>2%</td>
<td>98%</td>
</tr>
</tbody>
</table>

Passenger Rail Mobility Savings:

<table>
<thead>
<tr>
<th>Per Hour</th>
<th>Per Hour</th>
<th>Business</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-way Saver Coach Reserved Ticket (Carbondale to/from Chicago) = $34</td>
<td>5.50</td>
<td>$157</td>
<td>$95.70</td>
</tr>
<tr>
<td>Amtrak Time (hours) = 4</td>
<td>Drive in Passenger Vehicle:</td>
<td>$167</td>
<td>$133</td>
</tr>
<tr>
<td>Savings Per Trip:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-way Value Coach Reserved Ticket (Carbondale to/from Chicago) = $20</td>
<td>2.75</td>
<td>$78</td>
<td>$47.85</td>
</tr>
<tr>
<td>Amtrak Time (hours) = 2</td>
<td>Drive in Passenger Vehicle:</td>
<td>$98</td>
<td>$78</td>
</tr>
<tr>
<td>Savings Per Trip:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 way Saver Coach Reserved Ticket (Carbondale to/from Memphis) = $31</td>
<td>5</td>
<td>$143</td>
<td>$87.00</td>
</tr>
<tr>
<td>Amtrak Time (hours) = 2</td>
<td>Drive in Passenger Vehicle:</td>
<td>$113.40</td>
<td>$82.40</td>
</tr>
<tr>
<td>Savings Per Trip:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 way Saver Coach Ticket (Carbondale to/from New Orleans) = $20</td>
<td>6</td>
<td>$399</td>
<td>$243.60</td>
</tr>
<tr>
<td>Amtrak Time (hours) = 14</td>
<td>Drive in Passenger Vehicle:</td>
<td>$333</td>
<td>$251</td>
</tr>
<tr>
<td>Savings Per Trip:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Amtrak ticket prices from 2016. Current IRS Mileage Rate

Distances (miles):
- Carbondale -> Chicago = 310
- Carbondale -> Champaign = 181
- Carbondale -> Memphis = 210
- Carbondale -> New Orleans = 616

Average US Light Duty Vehicle Fuel Efficiency
21.6 mpg
(from US DOT : Bureau of Transportation Statistics)

MidWest Average Fuel Costs
(from US Energy Information Administration)
Gas-All Grades

<table>
<thead>
<tr>
<th>Year</th>
<th>$/Gal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>$ 2.779</td>
</tr>
<tr>
<td>2011</td>
<td>$ 3.532</td>
</tr>
<tr>
<td>2012</td>
<td>$ 3.605</td>
</tr>
<tr>
<td>2013</td>
<td>$ 3.515</td>
</tr>
<tr>
<td>2014</td>
<td>$ 3.560</td>
</tr>
<tr>
<td>2015</td>
<td>$ 2.411</td>
</tr>
<tr>
<td>Average</td>
<td>$ 3.200</td>
</tr>
</tbody>
</table>

New Downtown Hotel:
The average hotel occupancy rate is 65.5%. The new hotel will average 70 overnight stays each day. The most comparable hotel in the area books 60% of its rooms for business purposes. Given the hotel’s proximity to the train station, 25% of those business related bookings will be attributable to this project. The GSA calculates the overnight stay per diem rate for Carbondale IL to be $91. The GSA calculates the M&IE per diem rate to be $51 per day.

70 overnight stays per day *
60% business purposes = 42 rooms booked *
25% attributable to this project = 10.5 rooms per night * $91 per night = $955.50 * 365 nights per year = $348,757.50 per year

10.5 rooms per night * $51 per day = $835.50 per day * 365 days per year = $195,457.50 per year

Total: $544,215 per year